跳转至

三角函数

定义

\(Rt\Delta ABC\)中,设\(\angle ABC = \theta\),同时我们定义一个角的邻边只包含直角边,则:

\[\sin \theta = \frac{\text{对边}}{\text{斜边}}, \cos \theta = \frac{\text{邻边}}{\text{斜边}}, \tan \theta = \frac{\text{对边}}{\text{邻边}}\]
\[\cot \theta = \frac{\text{邻边}}{\text{对边}}, \sec \theta = \frac{\text{斜边}}{\text{邻边}}, \csc \theta = \frac{\text{斜边}}{\text{对边}}\]

在此作者给出一些常见的三角函数取值:

角度 θ \(\sin \theta\) \(\cos \theta\) \(\tan \theta\) \(\cot \theta\) \(\sec \theta\) \(\csc \theta\)
\(0^\circ\) 0 1 0 \(\pm\infty\) 1 \(\pm\infty\)
\(30^\circ\) \(\frac{1}{2}\) \(\frac{\sqrt{3}}{2}\) \(\frac{\sqrt{3}}{3}\) \(\sqrt{3}\) \(\frac{2\sqrt{3}}{3}\) 2
\(\approx 37^\circ (3-4-5)\) \(\frac{3}{5}\) \(\frac{4}{5}\) \(\frac{3}{4}\) \(\frac{4}{3}\) \(\frac{5}{4}\) \(\frac{5}{3}\)
\(45^\circ\) \(\frac{\sqrt{2}}{2}\) \(\frac{\sqrt{2}}{2}\) 1 1 \(\sqrt{2}\) \(\sqrt{2}\)
\(\approx 53^\circ (3-4-5)\) \(\frac{4}{5}\) \(\frac{3}{5}\) \(\frac{4}{3}\) \(\frac{3}{4}\) \(\frac{5}{3}\) \(\frac{5}{4}\)
\(60^\circ\) \(\frac{\sqrt{3}}{2}\) \(\frac{1}{2}\) \(\sqrt{3}\) \(\frac{\sqrt{3}}{3}\) 2 \(\frac{2\sqrt{3}}{3}\)
\(90^\circ\) 1 0 \(\pm\infty\) 0 \(\pm\infty\) 1